Browse Publications Technical Papers 2004-01-1514

Lightweight Closure Assemblies Utilizing Structural Foam 2004-01-1514

The primary goal of closure design is to achieve a functional, lightweight assembly, while also meeting stiffness, crash, and dent resistance targets. Typical automotive closure assemblies, such as liftgates, decklids, hoods, and doors, usually consist of an inner panel, outer panel, and miscellaneous reinforcements. There are also many attachment methods used; hem flange, spot-weld, laser weld, adhesive, hinges, latches, struts, and bolts. This paper investigates the weight reduction benefits gained from utilizing structural foam to increase stiffness performance. Finite element analysis (FEA) is applied to baseline and redesigned versions of a liftgate, door, and decklid assembly to measure the stiffness performance with structural foam application. Performance is measured in terms of maximum displacement and Von Mises stresses incurred from several loading conditions. The conclusions will show that through slight redesign and structural foam application, lighter closure assemblies can often be achieved with equivalent stiffness performance. Furthermore, cost analyses will show that this can be done at little or no cost increase, depending on the type of closure assembly.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.