Browse Publications Technical Papers 2004-01-1846
2004-06-08

Radical Controlled Autoignition at Reduced Compression Ratios in a Hydrogen D.I. Diesel Engine With Piston Micro-Chambers 2004-01-1846

This four-stroke engine study examines how micro-chamber generated “radicals” can facilitate the robust control of autoignition in direct-injection (D.I.) diesel engines. These internally produced radicals enable combustion under much lower than normal diesel compression ratios (CR's) and temperatures and make the chemical-kinetics control of autoignition timing a reality. In an attempt to better understand the mechanisms enabling radical based chemical control, the altered chemistry of radical ignition is studied numerically for the case of H2 combustion. Numerical simulation is based on a detailed mechanism involving as many as 19 species and 58 reactions. This H2 chemical-kinetics mechanism is simultaneously solved within two separate but connected open systems representing the distinctive main-chamber and micro-chamber processes (Figure 1). During the combustion cycle these two open systems continuously interact, passing energy and chemical species between one another and the atmosphere while attempting to equalize pressure differences.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Methanol Hypergolic Combustion Kinetics (without N2) and Frozen Equilibrium in Radical-Ignition Reduced Compression Ratio D.I. Engines Using Piston Micro-Chambers

2004-01-1847

View Details

TECHNICAL PAPER

Frozen Equilibrium and EGR Effects on Radical-Initiated H2 Combustion Kinetics in Low-Compression D.I. Engines Using Pistons with Micro-Chambers

2003-01-1788

View Details

TECHNICAL PAPER

An Increase of Engine Oil Consumption at High Temperature of Piston and Cylinder

810976

View Details

X