Browse Publications Technical Papers 2004-01-1882
2004-06-08

Hydrocarbons and Aldehydes from a Diesel Engine Running on Ethanol and Equipped With EGR, Catalyst and DPF 2004-01-1882

A commercially available exhaust aftertreatment system, DNOX™, comprising exhaust gas recirculation (EGR), an oxidative catalyst and a continuously regenerating diesel particulate filter (DPF) were tested. The test object was a 9-litre ethanol-fueled diesel engine from Scania equipped with turbocharger and aftercooler. A similar diesel engine from Scania, but running on ordinary Swedish diesel fuel, was used as a reference and a reminder of “the state of the art”. The tests involved two different ethanol fuels containing various ignition improvers, Beraid 3540 and rapeseed methyl ester. Test conditions for the engines were those specified in the European Stationary Cycle (ESC).
The aftertreatment system reduced the emissions of HC, CO and NOX, down to 0.15, 0.04 and 2.54 g/kWh, respectively, while the estimated particle mass was reduced by 67%. Actually, by using the DNOX™ system, the engines became Euro IV engines regarding the emissions of HC, CO and NOx.
The ethanol-fueled engine without EGR, catalyst or DPF emitted approximately 1.6 times more formaldehyde and 9.8 times more acetaldehyde than the diesel engine. However, the emission of acrolein was only 0.47 times the emission of acrolein from the diesel engine. When the ethanol-fueled engine was equipped with DNOX™, a significant reduction of the emissions of aldehydes was obtained. The emissions of acrolein, formaldehyde and acetaldehyde were reduced by 56%, 87% and 95%, respectively. An even higher reduction was observed when the system was connected to the diesel engine.
Fifteen different hydrocarbons (alkanes, olefins and monoaromates) were also identified. The diesel-fueled engine, without any exhaust aftertreatment devices, emitted approximately twice as much hydrocarbon than the ethanol-fueled engine, also without any exhaust aftertreatment devices. However, there were also qualitative differences. Three hydrocarbons, namely propene, ethene and benzene, accounted for 77 % of the hydrocarbons emitted from the diesel-fueled engine, while acetylene, ethene and benzene, made up only 53% of the hydrocarbons emitted from the ethanol-fueled engine. When connecting the system to the engines, a difference was observed; the reduction of analyzed hydrocarbon emissions was approximately 90% for the diesel-fueled engine, but only 47% for the ethanol-fueled engine.
The studied aftertreatment system has been developed and optimized for the diesel-fueled engine. This fact is reflected in the powerful reduction of hydrocarbons, aldehydes, particles and NOX that is obtained when connecting the system to the diesel-fueled engine. Nevertheless, a significant reduction is also obtained when connecting the system to the ethanol-fueled engine. Test results indicate that it should be possible to better optimize the system for the ethanol engine. It is also, probably, necessary to exchange the catalyst in the system. Thereby, an even higher reduction of unregulated and regulated emissions should be obtained.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Particulate Emissions From an Ethanol Fueled Heavy-Duty Diesel Engine Equipped With EGR, Catalyst and DPF

2004-01-1987

View Details

TECHNICAL PAPER

Investigating the Potential to Obtain Low Emissions From a Diesel Engine Running on Ethanol and Equipped With EGR, Catalyst and DPF

2004-01-1884

View Details

TECHNICAL PAPER

UK Particulate Measurement Programme (PMP): A Near US 2007 Approach to Heavy Duty Diesel Particulate Measurements - Comparison with the Standard European Method

2004-01-1990

View Details

X