Browse Publications Technical Papers 2004-01-1941
2004-06-08

Study of Catalytic Regeneration Mechanisms in Diesel Particulate Filters Using Coupled Reaction-Diffusion Modeling 2004-01-1941

Diesel particulate filters are today widely accepted as a viable technology for drastically reducing particulate emissions from diesel engines. Current applications are based on some form of catalytic assistance for the filter regeneration purposes, either in the form of a fuel borne catalyst or by employing catalyzed filters. This paper presents an experimental and computational study of the prevailing reaction mechanisms in the catalyst supported DPF systems. The knowledge of the soot reaction kinetics in uncatalyzed filters with O2 and NO2 is a prerequisite in this respect. Next, the reaction rates in the case of using a Ce-based fuel-borne catalyst are evaluated. Emphasis is given on the importance of oxygen diffusion effects during uncontrolled regeneration. Finally, the regeneration mechanisms in a catalyst coated filter are studied. In this case, experiments and simulations are carried out for controlled and uncontrolled regenerations, revealing differences in the governing reaction-diffusion processes. The diffusion of NO2, which appears important for low temperature regenerations is studied parametrically in more detail. Concluding, each configuration exhibits different characteristics regarding the reaction mechanism and its temperature dependence, with important implications for the system designer of diesel catalytic after-treatment systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A New Economical Silicon Carbide Diesel Engine Particulate Filter

2004-01-2029

View Details

TECHNICAL PAPER

A New DPF System for Duty Cycle Vehicles

2004-01-1937

View Details

TECHNICAL PAPER

Soot Oxidation by O2 and/or NO2 in the Presence of Catalysts Under Lean-Burn and Rich Atmospheres

2004-01-1943

View Details

X