Browse Publications Technical Papers 2004-01-2130
2004-06-15

A Finite Element Lower Extremity and Pelvis Model for Predicting Bone Injuries due to Knee Bolster Loading 2004-01-2130

Injuries to the knee-thigh-hip (KTH) complex in frontal motor vehicle crashes are of substantial concern because of their frequency and potential to result in long-term disability. Current frontal impact Anthropometric Test Dummies (ATDs) have been shown to respond differently than human cadavers under frontal knee impact loading and consequently current ATDs (and FE models thereof) may lack the biofidelity needed to predict the incidence of knee, thigh, and hip injuries in frontal crashes. These concerns demand an efficient and biofidelic tool to evaluate the occurrence of injuries as a result of KTH loading in frontal crashes. The MADYMO human finite element (FE) model was therefore adapted to simulate bone deformation, articulating joints and soft tissue behavior in the KTH complex. To validate this model, the knee-femur complex response was compared to results of post-mortem human subject (PMHS) experiments where a distributed load was applied to the knee while the femoral head rested on a fixed acetabular cup. The model was also validated against experimental whole KTH response data, in which the pelvis was fixed at the iliac wings and a distributed load was applied to the knee. These experiments showed that the acetabulum is the weakest structure in typical knee bolster loading, followed by femoral head and femoral shaft. The simulations replicated the experimentally observed force-deflection response and predicted the highest stress at the experimentally observed locations of bony fracture.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-0241

View Details

TECHNICAL PAPER

Development of a Finite Element Model of the Human Lower Extremity for Analyses of Automotive Crash Injuries

2000-01-0621

View Details

TECHNICAL PAPER

The Effects of Inboard Shoulder Belt and Lap Belt Loadings on Chest Deflection

2018-22-0002

View Details

X