Browse Publications Technical Papers 2004-01-2950

A Global Reaction Model for the HCCI Combustion Process 2004-01-2950

This paper presents a new global reaction model to simulate the Homogeneous Charge Compression Ignition (HCCI) combustion process. The model utilizes seven equations and seven active species. The model includes five reactions that represent degenerate chain branching in the low temperature region, including chain propagation, termination and branching reactions and the reaction of HOOH at the second stage ignition. Two reactions govern the high temperature oxidation, to allow formation and prediction of CO, CO2, and H2O. Thermodynamic parameters were introduced through the enthalpy of formation of each species. We were able to select the rate parameters of the global model to correctly predict the autoignition delay time at constant density for n-heptane and iso-octane, including the effect of equivalence ratio. Keeping the same reactions and rate parameters, simulations were compared with measured and calculated data from our engine operating at the following conditions: speed - 750 RPM, inlet temperature - 393 K to 453 K, fuel - PRF 20, equivalence ratio - 0.4 and 0.5, and volumetric efficiency - 71% and 89%. The simulations are in good agreement with the experimental data for this initial set of runs using PRF 20, including temperature, pressure, ignition delay, combustion duration, and heat release.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.