Browse Publications Technical Papers 2005-01-0228

Estimation of the Instantaneous In-Cylinder Pressure for Control Purposes using Crankshaft Angular Velocity 2005-01-0228

Instantaneous in-cylinder pressure, a key variable in the improvement of engine performance and reduction of emissions, is not likely to be measured directly in production type engines in the near future. As a countermeasure, a pressure estimation method based on physical first principles for the estimation of the instantaneous in-cylinder pressure of an SI engine using measured crankshaft angular velocity is presented here.
The approach consists of (a) mapping the model parameters at nominal operating conditions and (b) adapting the model parameters to current operating conditions using the instantaneous crankshaft angular velocity. The model reflects all essential effects on in-cylinder pressure, while the simulation time was reduced to 6 milliseconds per cycle on a standard PC. This makes it possible to estimate a cylinder-averaged pressure for each cycle up to an engine speed of more than 6000 rpm. The estimated in-cylinder pressure is available with a delay of one engine cycle.
The model has been compared to a benchmark pressure estimation method. Further, the model has been validated in simulation and against measured data for steady-state and transient operation. The model shows good accuracy, while the computational effort is promising for real-time applications. Furthermore, the model needs little calibration effort due to its physically based nature.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Fourier Analysis Based Synthetic Method for In-cylinder Pressure Estimation


View Details


Estimation of the Cylinder Pressure in a SI Engine Using the Variation of Crankshaft Speed


View Details


Crankangle Based Torque Estimation: Mechanistic / Stochastic


View Details