Browse Publications Technical Papers 2005-01-0232
2005-04-11

A Quasi-Dimensional Model for Estimating the Influence of Hydrogen-Rich Gas Addition on Turbulent Flame Speed and Flame Front Propagation in IC-SI Engines 2005-01-0232

Addition of hydrogen-rich gas to gasoline in internal combustion engines is gaining increasing interest, as it seems suitable to reach near-zero emission combustion, able to easily meet future stringent regulations.
Bottled gas was used to simulate the output of an on-board reformer (21%H2, 24%CO, 55%N2). Measurements were carried out on a 4-stroke, 2-cylinder, 0.5-liter engine, with EGR, in order to calculate the heat release rate through a detailed two-zone model.
A quasi-dimensional model of the flame was developed: it consists of a geometrical estimate of the flame surface, which is then coupled with the heat release rate. The turbulent flame speed can then be inferred. The model was then applied to blends of gasoline with hydrogen-rich gas, showing the effect on the flame speed and transition from laminar to turbulent combustion.
Comparison between the quasi-dimensional model and the conventional Metgalchi-Keck + Damköhler model gave a general validation for gasoline operation and suggested a modification of the usual time-delay function for transition from laminar to turbulent flame.
Results give new insight in previous findings from the heat release calculation: the effect of hydrogen-rich gas addition on flame speed is predominant in the early phase of the flame propagation, and the effect of the high curvature of the flame at the onset of combustion, compensated by the high mass diffusivity of hydrogen, is believed to be the physical reason to such behaviour.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Influence of Hydrogen-Rich-Gas Addition on Combustion, Pollutant Formation and Efficiency of an IC-SI Engine

2004-01-0972

View Details

TECHNICAL PAPER

A Research in the Cause of Simultaneous Reduction of NOx • SFC on HONDA CVCC SI Engine

2000-01-1938

View Details

TECHNICAL PAPER

Improving the Performance of a Small Spark-Ignition Engine by Using Oxygen-Enriched Intake Air

2007-32-0004

View Details

X