Browse Publications Technical Papers 2005-01-0946
2005-04-11

Progress in Diesel Particulate Filter Simulation 2005-01-0946

DPF design, system integration, regeneration control strategy optimization and ash ageing assessment, based on a traditional design of experiments approach becomes very time consuming and costly, due to the high number of tests required. This provides a privileged window of opportunity for the application of simulation tools and hence simulation is increasingly being used for the design of exhaust after-treatment systems with a Diesel Particulate Filter (DPF). DPF behavior depends strongly on the coupling of physico-chemical phenomena occurring over widely disparate spatial and temporal scales and a state-of-the-art simulation approach recognizes and exploits these facts introducing certain assumptions and/or simplifications to derive an accurate but computationally tractable DPF simulation tool, for the needs of industrial users. The present paper summarizes the current state of progress in DPF simulation, from the Aerosol & Particle Technology (APT) Laboratory, addressing consistent and rigorous refinements in a number of areas including: the aerodynamics at the filter and channel inlet, flow, filtration and reaction phenomena at the DPF material microstructure scale, and in coupling/interfacing DPF simulation with general purpose 3-D CFD codes. Where appropriate, experimental results are cited to re-enforce/validate the points brought forward by the theory.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X