Browse Publications Technical Papers 2005-01-2004

Fan and Heat Exchanger Flow Interactions 2005-01-2004

The performance requirements of the modern internal combustion engine have created increasingly large demands on the cooling system. Likewise, packaging of the engine and cooling system has required the development of compact high efficiency and performance cooling components. Much progress has been made to improve the performance of axial fan and heat exchanger technology, but the interaction between the fan and heat exchanger is often neglected. The problem is further enhanced when involving multiple fans, when coupling occurs not only between the fan and core flow, but also between the individual fans.
To better understand the phenomena involved with coupling fans and heat exchangers, EMP has conducted a study of a heat exchanger system involving four 280-mm fans mounted to a core. The system was analyzed with Fluent 6.1 computational fluid dynamics (CFD) software, in both a pusher and puller configuration. The effects of increasing the stand-off distance between the fans and heat exchanger core were evaluated. The study revealed that the vorticity generated by the fans inside the shroud created significant interactions in the shroud flow, which reduced the overall efficiency of the system.
EMP evaluated several variations of the base system to improve the shroud flow, including segregating the flow from the fans on the heat exchanger, implementing counter-rotating fans, and utilizing flow straighteners to direct the flow more smoothly through the core. Once an ideal fan configuration was determined, the performance of the base system and the “advanced” system were measured in a calorimeter test facility.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Computer Aided Aerodynamic Design of Radiator Fans


View Details


Latest Improvements of CFD Models of Engine Cooling Axial Fan Systems


View Details


Stator Performance for Automotive Cooling Fans with Unsteady Inlet Conditions


View Details