Browse Publications Technical Papers 2005-01-2070

A Thermal Model for Electromagnetic Actuators 2005-01-2070

The objective of this paper is to derive an accurate lumped parameter thermal model for electromagnetic actuators (EMA) that is suitable for control purposes. This model estimates the change in coil resistance due to temperature rise when energized by constant a current pulse. The dynamic equations are developed from basic thermodynamic and heat transfer principles, namely, the first law of thermodynamics, “The Law of conservation of energy” [4]. The dynamic equations are developed from the idealization of a control volume, and formulating the first law of thermodynamics on a rate basis. The resulting differential equation is based on energy generation, energy storage and energy dissipated by the coil. The result is a control-oriented model with an estimate of coil temperature and resistance change with current input. This formulation can easily be implemented without knowing the electric drive circuit and can be used as a modeling and design tool for any solenoidal actuator.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.