Browse Publications Technical Papers 2005-01-2314

Pad Insulator Modeling for Brake Squeal Analysis 2005-01-2314

Brake insulators often offer optimal solutions to squeal noise. In the process of engineering solutions to reduce the brake noise, a system-level finite element complex eigenvalue analysis is often used and has gained popularity in recent years. Models of insulators have also been proposed for system-level evaluation, however many challenges remain in efficiently implementing an insulator model, owing to complexities of the insulator component model. The complexities arise from the visco-elastic behavior (primarily the frequency and temperature dependence), and the thin polymer/steel multi-layer nature of the construction - typical in an insulator.
As a first part of a joint investigation, this paper explores the nature of frequency and temperature dependence in insulator models and reduces the cumbersome multi-layer model into a simpler form that can be more easily implemented in a typical brake system stability analysis. Using optimization, the original multi-layer, multi-frequency and multi-temperature set of models is reduced to an equivalent set of single-layer, (relatively) frequency-independent models. It is argued that this type of insulator model can be more easily extended to capture the multiple mechanisms involved, allowing the system-level stability analysis to more fully account for the effects of insulator damping. The proposed insulator model is verified through modal testing, during which it is observed that a pad-with-insulator model necessitates inclusion of the damping contributed by the brake pad assembly, particularly if an under-layer exists. A later paper will discuss the results from the full brake system stability analysis.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A New SAE Recommended Practice for Brake Natural Frequency and Damping Measurements


View Details


An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution


View Details


Study of the Relationship between DTV, BTV and BPV over Judder-Type Vibration of Disc Brake Systems


View Details