Browse Publications Technical Papers 2005-01-3370
2005-10-03

Machine Learning for Rocket Propulsion Health Monitoring 2005-01-3370

This paper describes the initial results of applying two machine-learning-based unsupervised anomaly detection algorithms, Orca and GritBot, to data from two rocket propulsion testbeds. The first testbed uses historical data from the Space Shuttle Main Engine. The second testbed uses data from an experimental rocket engine test stand located at NASA Stennis Space Center. The paper describes four candidate anomalies detected by the two algorithms.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X