Browse Publications Technical Papers 2005-01-3944

Simulating the Effect of Insulators in Reducing Disc Brake Squeele 2005-01-3944

Disc brake squeal is a very complicated phenomenon, and the influence of insulators in suppressing squeal is not fully understood. The aim of this paper is increase the understanding of the effect of insulators. A previous paper [1] presented an experimental technique for measuring the frequency- and temperature- dependent properties of viscoelastic materials currently used in insulators. The present work continues by considering the coupled vibrations of the brake pad and insulator. A comparison of natural frequencies found from experimental modal analysis and finite element modeling indicates agreement to with 5%. Experimentally determined modal loss factors of the brake pad vary dramatically with frequency, changing by a factor of 2 over the frequency range 2-11 kHz. A method for including this frequency dependence, as well as the frequency dependence of the insulator material, in state-of-the-art finite element software is proposed. This method uses forced response vectors from the complete frequency-dependent model to construct a reduced-order model with frequency-independent matrices. Agreement between the complete and reduced models is analytically guaranteed and numerically observed at a number of frequencies in the band of interest.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Application of State of the Art FE Software for Simulating the Effect of Insulators


View Details


Disc and Drum Brake Dynamometer Squeal Noise Test Procedure


View Details


Temperature and Coning Analysis of Ventilated Brake Disc Based on Finite Element Technique


View Details