Browse Publications Technical Papers 2005-24-008
2005-09-11

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber 2005-24-008

Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm.
The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied.
The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep. The ignition delay was elongated compared to the normal mapping and the engine-out emissions of soot and NOx were ultra-low.
It was found that the spatial location of LTR's does not shift significantly for different EGR levels. The formaldehyde signal overlaps the fuel signal in most cases before the onset of the main heat release.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X