Browse Publications Technical Papers 2006-01-0262

A 1D Unsteady Thermo-Fluid Dynamic Approach for the Simulation of the Hydrodynamics of Diesel Particulate Filters 2006-01-0262

A new approach for the fluid-dynamic simulation of the Diesel Particulate Filters (DPF) has been developed. A mathematical model has been formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy for unsteady, compressible and reacting flows, in order to predict the hydrodynamic characteristics of the DPF and to study the soot deposition mechanism. In particular, the mass conservation equations have been solved for each chemical component considered, and the advection of information concerning the chemical composition of the gas has been figured out for each computational mesh. A sub-model for the prediction of the soot cake formation has been developed and predictions of soot deposition profiles have been calculated for different loading conditions.
The results of the simulations, namely the calculated pressure drop, have been compared with the experimental data. At first, a validation with the experiments under steady state flow conditions for clean filters, as well as for loaded filters, has been performed and the calculated velocity profiles of the gas inside the filter channels have been compared to those calculated by a CFD model.
Finally, a comparison with the experiments on a 1.9L JTD Fiat turbocharged Diesel engine equipped with a DPF has been considered: simulations of the engine coupled with the whole exhaust system have been carried out, in order to investigate on the capability of the developed code to give good predictions even under unsteady flow conditions.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Simulation Based Comprehensive Performance Evaluation of Cat® C4.4 Current Production Engine with its Split Cycle Clean Combustion Variant using a Validated One-Dimensional Modeling Methodology


View Details


Multidisciplinary Simulation Model for the Balancing of Powertrain Combustion, Control and Components for Optimal Fuel Consumption, Emissions, Cost and Performance for a Diesel Engine Powered Passenger Car


View Details


Light Duty Diesel Engine: Optimization of Performances, Noxious Emission and Radiated Noise


View Details