Browse Publications Technical Papers 2006-01-0685

A NOX Trap Study Using Fast Response Emission Analysers for Model Validation 2006-01-0685

Lean burn after treatment systems using NOX traps for reducing emissions from diesel exhausts require periodic regeneration after each storage stage. Optimising these events is a challenging problem and a model capable of simulating these processes would be highly desirable. This study describes an experimental investigation, which has been designed for the purpose of validating a NOX trapping and regenerating model. A commercial computational fluid dynamics (CFD) package is used, to model NOX trapping and regeneration, using the porous medium approach. This approach has proved successful for three way catalysis modelling. To validate the model a one-dimensional NOX trap system has been tested on a turbocharged, EGR cooled, direct injection diesel engine controlled with an engine management system via DSPACE. Fast response emission analysers have been used to provide high resolution data across the after-treatment system for model validation. Measurements show CO is the primary reductant. After the trap NO and NO2 spikes (NOX slippage) were observed both at the beginning and end of the regeneration period. The former is believed to be due to insufficient reductant. Whilst the model can qualitatively describe the main storage and regeneration phases it failed to predict NOX slippage.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Three-Zone Heat Release Model for DI Diesel Engines


View Details


Experimental and Theoretical Analysis of the Combustion and Pollutants Formation Mechanisms in Dual Fuel DI Diesel Engines


View Details


Demonstration of High Compression Ratio Combustion Systems for Heavy-Duty Diesel Engine with Improved Efficiency and Lower Emissions


View Details