Browse Publications Technical Papers 2006-01-3492
2006-10-31

Self-Organizing Maps with Unsupervised Learning for Condition Monitoring of Fluid Power Systems 2006-01-3492

The goal of this paper is to study a proactive condition monitoring system for fluid power systems where the Self-Organizing Maps (SOM) with unsupervised learning is used to classify and interpret high-dimensional data measurements. If all the damages are not assumed to be known before diagnostics, an ordinary neural network with supervised learning for their detection can not be used. Operation of the proactive condition monitoring system is tested in a test system where two fault types are used. The test system is run in normal and two different fault situations. Measurement results are used for training and testing the SOM. In this paper these measurement results and also the quality of state recognition are shown.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X