Browse Publications Technical Papers 2006-32-0034
2006-11-13

Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation 2006-32-0034

To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Characterization of Knock Tendency and Onset in a GDI Engine by Means of Conventional Measurements and a Non-Conventional Flame Dynamics Optical Analysis

2017-24-0099

View Details

TECHNICAL PAPER

An Investigation of Different Combustion Chamber Configuration, Intake Temperature, and Coolant Temperature in a HCCI Optical Engine

2011-01-1765

View Details

TECHNICAL PAPER

An Introduction to How Low Speed Pre Ignition Affects Engine Components

2017-01-1042

View Details

X