Browse Publications Technical Papers 2007-01-0148
2007-04-16

Development of an Ignition Model for S.I. Engines Simulation 2007-01-0148

An ignition model based on Lagrangian approach was set-up. A lump model for the electrical circuit of the spark plug is used to compute breakdown and glow energy. At the end of shock wave and very first plasma expansion, a spherical kernel is deposited inside the gas flow at spark plug location. A simple model allows one to compute initial flame kernel radius and temperature based on physical mixture properties and spark plug characteristics. The sphere surface of the kernel is discretized by triangular elements which move radially according to a lagrangian approach. Expansion velocity is computed accounting for both heat conduction effect at the highest temperatures and thermodynamic energy balance at relatively lower temperatures. Turbulence effects and thermodynamic properties of the air-fuel mixture are accounted for. Restrikes are possible depending on gas flow velocity and mixture quality at spark location. CFD solver and 1D/lagrangian ignition model are closely coupled at each time step. The model proves to strongly reduce the grid sensitivity. The physical validation was carried out by reproducing the experimental tests by Herweg and Maly [1]. Comparisons showed a good agreement between experiments and numerical results.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of an Ignition and Combustion Model for Spark-Ignition Engines

2000-01-2809

View Details

TECHNICAL PAPER

Using Engine Experiments to Isolate Fuel Equivalence Ratio Effects on Heat Release in HCCI Combustion

2010-01-2189

View Details

TECHNICAL PAPER

Improving the Knowledge of High-Speed Liquid Jets Atomization by Using Quasi-Direct 3D Simulation

2005-24-089

View Details

X