Browse Publications Technical Papers 2007-01-0495
2007-04-16

Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems 2007-01-0495

This work describes the development, application and coupling of two different numerical codes, respectively based on a 1D (Gasdyn) and 3D (OpenFOAM) schematization of the geometrical domain. They have been adopted for the prediction of the wave motion inside the intake and the exhaust systems of internal combustion engines. The HLLC Riemann solver has been implemented both in the CFD and the 1D codes to solve the Euler system of equations, in order to operate with the same solver on the different calculation domains. Moreover, the HLLC solver has been applied to treat the boundary conditions at the interface between the two domains, in such a way to allow the propagation of flow disuniformities through the domain interface, without affecting the solution accuracy. The hybrid approach was used for the simulation of two different test cases: a complex 5 into 1 pipe junction of a high performance V10 engine and a Venturi tube plus a Helmholtz resonator of a single cylinder S.I. engine. Different engine operating points have been simulated at full load, covering a revolution speed range typical of these engines. The results have been compared to experimental measurements and to complete 1D simulations of the same geometries, pointing out that the hybrid approach is capable of giving a better prediction of the wave motion when the geometry is characterized by highly three-dimensional shapes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-01-0267

View Details

TECHNICAL PAPER

A New Simple Friction Model for S. I. Engine

2009-01-1984

View Details

TECHNICAL PAPER

CFD Study of Spray Design for a GDI High Performance 2-Stroke Engine

2010-32-0014

View Details

X