Browse Publications Technical Papers 2007-01-0731

Estimation of Frontal Crush Stiffness Coefficients for Car-to-Heavy Truck Underride Collisions 2007-01-0731

The first objective of this paper was to evaluate a public domain finite element (FE) model of a 1990 Ford Taurus from the perspective of crush energy absorption. The validity of the FE model was examined by first comparing simulation results to several published full-frontal crash tests. Secondly, the suitability of the model for underride simulation was evaluated against two series of full-scale crash tests into vertically offset rigid barriers.
Next, the evaluated FE model was used to pursue the main objective of this work, namely to develop an approach for estimating underride crush energy. The linear-spring methodology was adopted whereby the underride crush stiffness was determined by relating the residual upper radiator support deformation to crush energy. An underride crush stiffness estimation method was proposed based on modifying the full-frontal stiffness coefficients. The method was further simplified into a “Rule-of-Thumb” estimation method, and an example of its application was provided along with a discussion of its estimation accuracy.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.