Browse Publications Technical Papers 2007-01-3070
2007-07-09

Design and Performance of the Sorbent-Based Atmosphere Revitalization System for Orion 2007-01-3070

Validation and simulations of a real-time dynamic cabin model were conducted on the sorbent-based atmosphere revitalization system for Orion. The dynamic cabin model, which updates the concentration of H2O and CO2 every second during the simulation, was able to predict the steady state model values for H2O and CO2 for long periods of steady metabolic production for a 4-person crew. It also showed similar trends for the exercise periods, where there were quick changes in production rates. Once validated, the cabin model was used to determine the effects of feed flow rate, cabin volume and column volume. A higher feed flow rate reduced the cabin concentrations only slightly over the base case, a larger cabin volume was able to reduce the cabin concentrations even further, and the lower column volume led to much higher cabin concentrations. Finally, the cabin model was used to determine the effect of the amount of silica gel in the column. As the amount increased, the cabin concentration of H2O decreased, but the cabin concentration of CO2 increased.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X