Browse Publications Technical Papers 2007-01-3587

A Comparison of Two Soft-Sensing Methods for Estimating Vehicle Side Slip Angle 2007-01-3587

Two soft-sensing methods which are neural network and Kalman filter for estimating vehicle side slip angle are compared. A radial basis function (RBF) neural network based soft-sensing model is proposed to estimate vehicle side slip angle in driver-vehicle closed-loop system. Vehicle side slip angle is considered as mapping of time series of yaw rate and lateral acceleration which are easily measured, the nonlinear mapping relationship of the three state parameters is established through neural network. In addition the method based on Kalman filter is also given. The results of comparison between estimation and measurement show that the neural network method proposed in this paper has higher accuracy and less computation requirement. It can provide theoretical guidance for design of estimator in vehicle stability control system.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.