Browse Publications Technical Papers 2008-01-0993
2008-04-14

Development and Real-Time Implementation of Recurrent Neural Networks for AFR Prediction and Control 2008-01-0993

The paper focuses on the experimental identification and validation of recurrent neural networks (RNN) for real-time prediction and control of air-fuel ratio (AFR) in spark-ignited engines. Suited training procedures and experimental tests are proposed to improve RNN precision and generalization in predicting both forward and inverse AFR dynamics for a wide range of operating scenarios. The reference engine has been tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. The comparison between RNNs simulation and experimental trajectories showed the high accuracy and generalization capabilities guaranteed by RNNs in reproducing forward and inverse AFR dynamics.
Then, a fast and easy-to-handle procedure was set-up to verify the potentialities of the inverse RNN to perform feed-forward control of AFR. Preliminary experimental tests indicate how the inverse RNN controller performance are comparable and in some cases even better than those guaranteed by the commercial ECU the reference engine is equipped with. Therefore RNN-based control of AFR emerges as a high potential alternative to reduce calibration efforts and to improve control performance as compared to the currently adopted techniques.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X