Browse Publications Technical Papers 2008-01-1251

Development of an Adaptive Workload Management System using Queueing Network-Model Human Processor (QN-MHP) 2008-01-1251

The chance of vehicle collisions significantly increases when drivers are overloaded with information from in-vehicle systems. Developing adaptive workload management systems (AWMS) to dynamically control the rate of messages from these in-vehicle systems is one of the solutions to this problem. However, existing AWMSs do not use a model of driver cognitive system to estimate workload and only suppress or redirect in-vehicle system messages, without changing their rate based on driver workload. In this work, we propose a prototype of a new adaptive workload management system (QN-MHP AWMS) and it includes: a queueing network model of driver workload (Wu & Liu, In Press) that estimates driver workload in different driving situations, and a message controller that determines the optimal delay times between messages and dynamically controls the rate of messages presented to drivers. Given the task information of a secondary task, QN-MHP AWMS was able to adapt the rate of messages to driving conditions (speeds and curvatures) and driver characteristics (age). A corresponding experimental study was conducted to validate the potential effectiveness of this system in reducing driver workload and improving driver performance. Further developments of QN-MHP AWMS including its usage in in-vehicle systems design and possible implementation in vehicles are discussed.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Driver Distraction: Are We Mistaking a Symptom for the Problem?


View Details


Relationship Between Driver Eyes-Off-Road Interval and Hazard Detection Performance Under Automated Driving


View Details


Effect of Fabric Type and Construction on Automotive Seating Comfort


View Details