Browse Publications Technical Papers 2008-01-2407
2008-10-06

Effects of LIF Tracers on Combustion in a DI HCCI Engine 2008-01-2407

Many experimental efforts to track fuel-air-residual mixture preparation in internal combustion engines have employed laser induced fluorescence (LIF) of tracers. Acetone and 3-pentanone are often chosen as tracers because of their relatively strong LIF signal, weak quenching, and reasonable match to thermo-chemical properties of common fuels such as iso-octane. However, the addition of these tracers to fuel-air mixtures could affect combustion behavior. In this work, we assess these effects to better understand limitations of tracer-based engine measurements.
The effects of tracer seeding on combustion phasing, duration, and variation are studied in an HCCI engine using a recompression strategy to accommodate single- and multi-stage-ignition fuels. Using direct-injected (DI) fuels iso-octane and n-heptane, comparisons are made of combustion performance with and without seeding of the intake air (air seeding, as opposed to the more common fuel seeding, is a variation of LIF used to measure residual-gas concentration). Chemical and premixing effects of tracer addition are distinguished by substituting equivalent amounts of fuel for the tracer. Chemical kinetic simulations of iso-octane and n-heptane oxidation help explain the experimentally determined trends.
Results show that the phasing of iso-octane combustion can be significantly impacted by premixing effects because of the sensitivity of ignition to charge temperature. For n-heptane, the chemical effects of tracer addition are shown to be more pronounced because of impact on low-temperature heat release. Acetone retards the combustion for both single- and two-stage-ignition fuels, whereas 3-pentanone advances iso-octane combustion while retarding n-heptane. Overall, we found that the impact of tracer addition is modest for the chosen operating conditions since varying the intake temperature can easily compensate for it.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X