Browse Publications Technical Papers 2008-22-0018

Development of a Finite Element Model to Study the Effects of Muscle Forces on Knee-Thigh-Hip Injuries in Frontal Crashes 2008-22-0018

A finite element (FE) model with knee-thigh-hip (KTH) and lower-extremity muscles has been developed to study the potential effects of muscle tension on KTH injuries due to knee bolster loadings in frontal crashes. This model was created by remeshing the MADYMO human lower-extremity FE model to account for regional differences in cortical bone thickness, trabecular bone, cortical bone with directionally dependent mechanical properties and Tsai-Wu failure criteria, and articular cartilage. The model includes 35 Hill-type muscles in each lower extremity with masses based on muscle volume. The skeletal response of the model was validated by simulating biomechanical tests without muscle tension, including cadaver skeletal segment impact tests documented in the literature as well as recent tests of seated whole cadavers that were impacted using knee-loading conditions similar to those produced in FMVSS 208 testing.
Simulations of knee-to-knee-bolster impacts conducted with and without different levels of lower-extremity muscle activation reported in the literature for braking/bracing suggest that muscle tension has the potential to decrease the externally applied force required to cause KTH fracture, and the potential to increase the likelihood of femoral shaft fracture relative to hip fracture by increasing bending moments in the femoral shaft. However, more reliable and complete data on activation levels of muscles in the lower extremities during vehicle braking and bracing are needed before this effect of muscle tension can be confirmed and before the overall effects of muscle tension on KTH injury can be determined.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Effect of Hybrid III Leg Geometry on Upper Tibia Bending Moments


View Details


The Tolerance of the Human Hip to Dynamic Knee Loading


View Details


Damage and/or Impact Absorber (Isolator) Movements Observed in Low Speed Crash Tests Involving Ford Escorts


View Details