Browse Publications Technical Papers 2009-01-1041

Robust Design of Control Systems with Physical System Variances 2009-01-1041

Today’s automotive control system engineering requires precision and accuracy. The cost of a controller designed with conservative margins may increase significantly, causing the design, when produced and marketed, to be less competitive. On the other hand, a design with too little margin may lead to system malfunction under marginal environment conditions or due to component aging. A robust design is one that is immune to the effects of component variance due to tolerance, temperature, and aging, among other factors. Achieving a robust design involves careful analysis of the controller and plant operating together. This paper discusses how MATLAB and Simulink can be leveraged to ensure the robustness of a mechatronic system design. The merits of the network approach as a technique for modeling physical systems as an alternative to the signal flow (block diagram) approach are also discussed. Finally, the advantages of integrating these methods within Simulink as the environment for Model-Based Design for mechatronic systems are presented. An example involving Monte Carlo simulation on a simple multidomain mechatronic control system is used as a case study.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.