Browse Publications Technical Papers 2009-01-1206

Development of Fender Structure for Pedestrian Protection 2009-01-1206

In a typical passenger car-to-pedestrian collision, it is noted that the pedestrian’s body rotates after the initial contact with the hood leading edge. Consequently, the head often crashes into a stiff part of the car body, resulting in serious or life-threatening head injuries. Therefore, to reduce pedestrian fatalities, it is important to improve vehicle structures so as to mitigate head injuries.
Front fenders are one example of such stiff body parts with small impact energy absorption capability. This paper reports on the development of a new front fender structure designed to mitigate pedestrian head injuries in passenger car-to-pedestrian collisions. The new structure is characterized by fender supporting brackets that incorporate a break-off mechanism in the riveted joints between the fender and brackets. It maintains necessary joint stiffness for normal driving use while having sufficient impact energy absorption capability because the riveted joints rupture when they are subjected to a certain level of impact force during a collision, thereby promoting deformation of the fender cross section.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.