Browse Publications Technical Papers 2009-01-1357
2009-04-20

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy 2009-01-1357

The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP).
The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray.
The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed. This indicates that the soot forming rate is not the dominant factor behind the trends in engine-out PM. High correlation coefficients between PM and; portion of heat release after end of injection (EOI), engine out UHC and engine out CO all suggests that the soot oxidation process may be a more important factor.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

A Study on the Emissions of Chemical Species from Heavy-Duty Diesel Engines and the Effects of Modern Aftertreatment Technology

2009-01-1084

View Details

TECHNICAL PAPER

End Gas Inhomogeneity, Autoignition and Knock

982616

View Details

TECHNICAL PAPER

Low Emission Combustion influences Durability of Fuel Injection Pipe Line and Treatment of the Pipe

871614

View Details

X