Browse Publications Technical Papers 2009-01-1487

Effects of Cooled EGR Routing on a Second-Generation DISI Turbocharged Engine Employing an Integrated Exhaust Manifold 2009-01-1487

The work reports results from tests employing different cooled EGR routes on a ‘Sabre’ direct-injection spark-ignition (DISI) research engine. As standard, this engine has been configured to provide good fuel consumption from a combination of mild downsizing, a combustion system with close-spaced injection and the adoption of a three-cylinder configuration in concert with an exhaust manifold integrated into the cylinder head. This has already been shown to offer a rated power specific fuel consumption of 272 g/kWh without cooled EGR.
Three different EGR configurations are tested, with the best BSFC at nominal rated conditions being found to be 257-258 g/kWh at a cooled EGR rate of 6%. All of the EGR routing configurations tested in this work permit ready operation of the engine at Lambda 1 and MBT conditions, however, the results show little sensitivity in the combustion system to the actual routing employed. With all of the tested configurations there is a trade-off in terms of the effect on the charging system and also combustion stability. This suggests that other technologies, such as a variable geometry turbocharger or a two-stage charging system, may be more beneficial on this engine configuration than cooled EGR when it is considered as an entire system.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements


View Details


Dedicated EGR: A New Concept in High Efficiency Engines


View Details


Dilution Interest on Turbocharged SI Engine Combustion


View Details