Browse Publications Technical Papers 2009-01-1773
2009-06-15

Visualization of Autoignited Kernel and Propagation of Pressure Wave during Knocking Combustion in a Hydrogen Spark-Ignition Engine 2009-01-1773

Investigation of knocking combustion in a hydrogen spark-ignition engine is one of the major challenges for future vehicle development. The knock phenomenon in a Spark-Ignition (SI) engine is caused by autoignition of the unburned gas ahead of the flame. The explosive combustion of the end-gas creates a pressure wave that leads to damage of the cylinder wall and the piston head of the engine. We observed autoignition in the end-gas region due to compression by the propagating flame front using a high-speed colour video camera through the optically accessible cylindrical quartz window on the top of the cylinder head. Moreover, a high-speed monochrome video camera operating at a speed of 250, 000 frame/s was used to measure the pressure wave propagation. The goal of this research was to improve our ability to describe the effect of the autoignition process on the end-gas and propagating pressure wave during knocking combustion with the help of a high-speed video camera.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

962103

View Details

TECHNICAL PAPER

Computations and Experiments for Clarifying Compression Level and Stability of Colliding Pulsed Supermulti-Jets in a Piston-Less Single-Point Autoignition Engine

2016-01-2331

View Details

TECHNICAL PAPER

A Non-Linear Regression Technique to Estimate from Vibrational Engine Data the Instantaneous In-Cylinder Pressure Peak and Related Angular Position

2016-01-2178

View Details

X