Browse Publications Technical Papers 2009-01-1907
2009-06-15

Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation 2009-01-1907

The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency). Because there was no significant change in the end gas temperature in these experiments, the gasohol knock resistance was attributed solely to the ignition chemistry of the ethanol.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 17% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Impact of Reformed Ethanol on the Volumetric Efficiency in I.C. Engines

2010-01-1465

View Details

TECHNICAL PAPER

Investigation into the Influence of Charge Cooling and Autoignition Chemistry on the Greater Knock Resistance of Ethanol over Iso-octane

2013-01-2615

View Details

JOURNAL ARTICLE

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

2017-01-0662

View Details

X