Browse Publications Technical Papers 2009-24-0110

Development of recurrent neural networks for virtual sensing of NOx emissions in internal combustion engines 2009-24-0110

The paper focuses on the experimental identification and validation of recurrent neural networks (RNN) for virtual sensing of NO emissions in internal combustion engines (ICE). Suited training procedures and experimental tests are proposed to improve RNN precision and generalization in predicting NO formation dynamics. The reference Spark Ignition (SI) engine was tested by means of an integrated system of hardware and software tools for engine test automation and control strategies prototyping. A fast response analyzer was used to measure NO emissions at the exhaust valve. The accuracy of the developed RNN model is assessed by comparing simulated and experimental trajectories for a wide range of operating scenarios. The results evidence that RNN-based virtual NO sensor will offer significant opportunities for implementing on-board feedforward and feedback control strategies aimed at improving the performance of after-treatment devices.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.