Browse Publications Technical Papers 2009-36-0261

Probability of Occupant's Injuries due to Rollover Crashes - Computational Methods 2009-36-0261

Rollover crashes are responsible for more than 20% of total passengers deaths in vehicular accidents. Every year a higher number of consumers have been critically injured in rollovers, which translates into hundreds of millions of dollars of unnecessary health care cost. Efforts to reduce the incidence of death and catastrophic injuries associated with rollover crashes have increased the importance of both, prototype testing and computational simulations.
Automotive industry and individual researchers have performed numerous rollover tests using instrumented anthropomorphic test devices (ATD), with the objective of predicting possible head, neck, and cervical spine injuries. Some of these works measured accelerations, forces and moments on head, neck and cervical spines, which can cause several other injuries according to medical traumas databases.
The objective of the present work is to present finite element computational models used to simulate rollover crashes and the associated methodology to determine possible injuries in drivers. ATDs were considered in the computational models in order to estimate the severity of the injuries. The proposed methodology is also used to compare different standards and procedures. Finally, it is shown that the FMVSS 216 procedure is not able to estimate the real loads found during a rollover event.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

An Approach for Compatibility Improvement Based on US Traffic Accident Data


View Details


Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes


View Details


Improved Side Impact Protection: Design Optimisation for Minimum Harm


View Details