Browse Publications Technical Papers 2010-01-0111
2010-04-12

Development of a Method to Assess Vehicle Stability and Controllability in Open and Closed-Loop Maneuvers 2010-01-0111

This paper describes a method to evaluate vehicle stability and controllability when the vehicle operates in the nonlinear range of lateral dynamics. The method is applied to open-loop steering maneuvers as well as closed-loop path-following maneuvers. Although path-following maneuvers are more representative of real world driving intent, they are usually considered inappropriate for objective assessment because of repeatability and accuracy issues. The automated test driver (ATD) can perform path-following maneuvers accurately and with good repeatability. This paper discusses the usefulness of application of the automated test drivers and path-following maneuvers. The dynamic mode of instability is not directly obtained from measurable outputs such as yawrate and lateral acceleration as in open-loop maneuvers. A few metrics are defined to quantify deviation from desired or ideal behavior in terms of observed “unexpected” lateral force and moment. These signals are estimated using sliding mode method. The metrics are in terms of unexpected energy and unexpected position and can be applied to an open or closed-loop maneuver. The method is also shown to quantify active stability control systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-01-0963

View Details

TECHNICAL PAPER

A Fuzzy Based Vehicle Dynamic Stability Control (FDSC)

2006-01-3483

View Details

TECHNICAL PAPER

Electronic Stability Applications in Commercial Vehicles

2008-01-2615

View Details

X