Browse Publications Technical Papers 2010-01-0537
2010-04-12

Parametric Examination of Filtration Processes in Diesel Particulate Filter Membranes with Channel Structure Modification 2010-01-0537

The limited spatial area in conventional diesel particulate filter (DPF) systems requires frequent regenerations to remove collected particulate matter (PM) emissions, consequently resulting in higher energy consumption and potential material failure. Due to the complex geometry and difficulty in access to the internal structure of diesel particulate filters, in addition, many important characteristics in filtration processes remain unknown. In this work, therefore, the geometry of DPF membrane channels was modified basically to increase the filtration areas, and their filtration characteristics were evaluated in terms of pressure drop across the DPF membranes, effects of soot loading on pressure drop, and qualitative soot mass distribution in the membrane channels. In this evaluation, an analytical model was developed for pressure drop, which allowed a parametric study with those modified membranes. This parametric study was conducted in a bench-scaled DPF test system with pressurized air, which revealed the detailed characteristics of filtration processes in the modified DPF membranes and provided optimum design criteria for improving filtration and regeneration efficiencies. The soot cake formation in the expanded filtration areas was visualized by a unique micro-imaging system, suggesting further detailed examinations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X