Browse Publications Technical Papers 2010-01-0783
2010-04-12

Optimization of Engine Control Strategies During Transient Processes Combining 1-D and 3-D Approaches 2010-01-0783

One-dimensional simulation methods for unsteady (transient) engine operations have been developed and published in previous studies. These 1-D methods utilize heat release and emissions results obtained from 3-D CFD simulations which are stored in a data library. The goal of this study is to improve the 1-D methodology by optimizing the control strategies. Also, additional independent parameters are introduced to extend the 3-D data library, while, as in the previous studies, the number of interpolation points for each parameter remains small.
The data points for the 3-D simulations are selected in the vicinity of the expected trajectories obtained from the independent parameter changes, as predicted by the transient 1-D simulations. By this approach, the number of time-consuming 3-D simulations is limited to a reasonable amount. Boost pressure, EGR and relative A/F limit control procedures are compared to improve the engine response to speed/load requirements at minimized emission levels.
The influence of transient operations on the behavior of the prescribed EGR flow rates is demonstrated. The examples are calculated for a medium speed diesel engine but the method is seamlessly transferable to road vehicle engines. Since this method reduces the simulation time, it is possible to predict emissions during standardized unsteady tests in real time. Therefore, this 1-D simulation method is a useful tool for engine optimization and control, that is, it allows the minimization of the fuel consumption while meeting legislated emission standards.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Simultaneous Reduction of Engine Emissions and Fuel Consumption Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

2000-01-1890

View Details

TECHNICAL PAPER

Multidimensional Optimization of DI Diesel Engine Process Using Multi-Zone Fuel Spray Combustion Model and Detailed Chemistry NOx Formation Model

2013-01-0882

View Details

TECHNICAL PAPER

Improving Base Engine Calibrations for Diesel Vehicles Through the Use of DoE and Optimization Techniques

2005-01-3833

View Details

X