Browse Publications Technical Papers 2010-01-0877
2010-04-12

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging 2010-01-0877

By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models. The nozzle internal structure is also imaged by the x-ray phase-contrast method. The measured nozzle internal geometry was used to predict cavitation inside the orifice through a numerical simulation. The simulation demonstrates that cavitation generated at the sharp inlet is responsible for the cavitating spray from the nozzle.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.

Due to current capacity constraints, printed versions of our publications - including standards, technical papers, EDGE Reports, scholarly journal articles, books, and paint chips - may experience shipping delays of up to four to six weeks. We apologize for any inconvenience.
We also recommend:
TECHNICAL PAPER

Diesel Spray Modeling Under Off-Axis Needle Displacement

2015-01-0922

View Details

TECHNICAL PAPER

Large Eddy Simulation of Spray Injection to Turbulent Duct Flow from a Slit Injector

2007-01-1403

View Details

TECHNICAL PAPER

Numerical and Experimental Study on Internal Nozzle Flow and Macroscopic Spray Characteristics of a Kind of Wide Distillation Fuel (WDF) - Kerosene

2016-01-0839

View Details

X