Browse Publications Technical Papers 2010-01-1120
2010-04-12

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine 2010-01-1120

For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%. At the same time, BSNOx was reduced to 1.0 g/kWh from 3.5 g/kWh at 2 MPa BMEP with no increase in smoke emission and particulate matter (PM). The technologies developed in this study are not only to reduce exhaust emissions but also useful and available to improve brake-specific fuel consumption for both single-cylinder and multi-cylinder heavy duty diesel engines.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Experimental Study of Dual Fueling with Gasoline Port Injection in a Single-Cylinder, Air-Cooled HSDI Diesel Generator

2010-01-0869

View Details

JOURNAL ARTICLE

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-01-0864

View Details

JOURNAL ARTICLE

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-01-0808

View Details

X