Browse Publications Technical Papers 2010-32-0021

A Practical Approach towards Muffler Design, Development and Prototype Validation 2010-32-0021

Exhaust noise from engines is one of component noise pollution to the environment. Exhaust systems are developed to attenuate noise meeting required db (a) levels and sound quality, emissions based on environment norms. Hence this has become an important area of research and development. Most of the advances in theory of acoustic filters and exhaust mufflers have been developed in last two decades.
Mufflers are important part of engine system and commonly used in exhaust system to minimize sound transmissions caused by exhaust gases. Design of mufflers is a complex function that affects noise characteristics, emission and fuel efficiency of engine. Therefore muffler design becomes more and more important for noise reduction. Traditionally, muffler design has been an iterative process by trial and error. However, the theories and science that has undergone development in recent years has given a way for an engineer to cut short number of iteration. In today's competitive world market, it is important for a company to shorten product development cycle time.
This paper deals with a practical approach to design, develop and test muffler particularly reactive muffler for exhaust system, which will give advantages over the conventional method with shorten product development cycle time and validation. This paper also emphasis on how modern CAE tools could be leveraged for optimising the overall system design balancing conflicting requirements like Noise & Back pressure.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Optimization Methodology for Flow & Acoustics Performance of Air Induction System


View Details


Acoustics of Turbochargers


View Details


Prediction of Muffler Radiated Noise for a Diesel Engine


View Details