Browse Publications Technical Papers 2010-36-0235

Densification of titanium alloys obtained by powder metallurgy 2010-36-0235

Titanium alloys parts are ideally suited for advanced aerospace systems, chemical and naval applications and surgical implants because of its high strength-to-weight ratio, high resistance to many corrosive environments, and can be used over a wide range of temperatures. Powder metallurgy of titanium and Ti-based alloys may lead to the obtainment of components having weak-to-absent textures, uniform grain structure and higher homogeneity compared with conventional wrought products. In this work, results of the densification of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr alloys after cold and isostatic pressing with subsequent densification by sintering between 900-1400°C using hydride titanium powders are presented. The samples were characterized by X-ray diffraction, scanning electron microscopy, Vickers indentation and density measurements. The results showed a higher densification with increasing sintering temperature, densification levels above 90% and the importance of using hydrided titanium powder in the final porosity.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.