Browse Publications Technical Papers 2011-01-0829
2011-04-12

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model 2011-01-0829

RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes. In this case the turbulence energy is also over-predicted, because the turbulence model is not sufficiently dissipative. To improve predictions of the current RNG turbulence model, possible optimization approaches are explored. In particular, a generalized RNG closure model based on the "dimensionality" of the flow strain rate is proposed. When the generalized RNG model is tested in jet flows, the predicted tip penetrations match the experimental data well. The predicted turbulence energy of the engine flow is also improved significantly. Additionally, available direct numerical simulation (DNS) results are employed to support the continued use current RANS turbulence models, and to suggest strategies for improving the model coefficients. Two special compression cases are investigated, one is 3-D spherical compression, and the other is 1-D unidirectional compression.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

2014-01-1428

View Details

JOURNAL ARTICLE

Effect of Vortex Generator on Flow Field Quality in 3/4 Open Jet Automotive Wind Tunnel

2017-01-1530

View Details

TECHNICAL PAPER

Advanced Techniques for Flow Simulation in Automotive Climatic Wind Tunnels

910312

View Details

X