Browse Publications Technical Papers 2011-01-1330

High Performance NH 3 SCR Zeolite Catalysts for Treatment of NO x in Emissions from Off-Road Diesel Engine 2011-01-1330

The leading approach for reduction of NOx from diesel engines is selective catalytic reduction employing urea as a reductant (NH₃- or urea-SCR). For passenger vehicles, the best known NH₃-SCR catalysts are Cu-ZSM-5 and Fe-ZSM-5 and have been shown to function very well in a narrow temperature range. This technology is not directly transferable to off-road diesel engines which operate under a different duty cycle resulting in exhaust with different fractions of components than are present in passenger vehicle emissions. Our results show that Cu-ZSM-5 exhibits 90% NOx reduction efficiency in 250-450°C range while Fe-ZSM-5 is highly effective in 350-550°C range for off-road engines. However, a combination of these catalysts cannot efficiently reduce NOx in 150-650°C which is the desirable range for deployment in off-road diesel engines. In our efforts to increase the effective range of these catalysts, we initiated efforts to modify these catalysts by catalyst promoters. In this paper, we describe our results on synthesis, characterization, and testing of new zeolites prepared by selective partial replacement of framework aluminum with trivalent ions. The new hetero-bimetallic MFI-zeolite, formed by partial replacement of framework aluminum with indium, exhibits high NOx conversion performance at 150°C. The impact of aging on the NOx reduction efficiencies of these catalysts is also presented.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Ceria Doped Ba-Alumina Oxides for Durable NOx-Storage Catalysts Efficient at Low Temperature


View Details


Ceria-Based Materials for DeNOx Catalysts Efficient at Low Temperature and with Improved Sulphur Tolerance


View Details


Effect of Urea Thermal Decomposition on Diesel NOx-SCR Aftertreatment Systems


View Details