Browse Publications Technical Papers 2011-01-1722

Prediction of Structural Acoustic Radiation for Compressor Considering Airflow Pulsed Load 2011-01-1722

A coupled vibro-acoustic of a compressor modeling process was demonstrated for predicting the acoustic radiation from a vibrating compressor structure based on dynamic response data. FEM based modal analysis of the compressor was performed and the result was compared with experimental data, for the purpose of validating the FE model. Modal based force response analysis was conducted to calculate the compressor's surface vibration velocity on radiating structure, using the load which caused by mechanical excitation as input data. In addition, due to the coolant had oscillating gas pressure, the gas pulsed load was also considered during the dynamic response analysis. The surface vibration velocity solution of the compressor provided the necessary boundary condition input into a finite element/boundary element acoustic code for predicting acoustic radiation. A hemispherical field point model was built according to ISO 3744:1994 to evaluate the noise radiated during the compressor run-up in the frequency domain. With application of the field response analysis, the radiation power, the field point sound pressure level was calculated. For purpose of noise and vibration reduction, some researches focused on parameters that affected the compressor noise radiation, such as compressor housing thickness and chilled storage housing thickness, were carried out. Sound power measurement was performed in semi-anechoic chamber for simulation verification. Calculated and analytical results were generalized for further noise and vibration reduction research process.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Structural Optimization Method and Techniques to Reduce Radiation Noise


View Details


Global Acoustic Sensitivity Analysis Applied to the Reduction of Shell Noise Radiation of a Simulated Engine Air Induction System Component


View Details


Pulley Optimization for Improved Steering Pump Airborne Noise Performance


View Details