Browse Publications Technical Papers 2011-01-2751
2011-10-18

Optimal Scheduling and Delay Analysis for AFDX End-Systems 2011-01-2751

The present work aims at the reduction of transmission delay at the level of AFDX ES (Avionics Full Duplex Switched Ethernet End-Systems). To this end, two approaches, namely Network Calculus and response time analysis (RTA), are employed in the computation of upper bound delay. To evaluate the delay regarding different scheduling policies, the arrival curve of the flow on output of ES is established for given traffic shaping algorithm and service mode. Computational analysis shows that Bandwidth Allocation Gap (BAG) based scheduling is the optimal policy at the level of AFDX ES, which leads to the tightest output arrival curve among all possible scheduling policies. BAG-based scheduling consists in assigning higher priority to virtual links with smaller BAG thus corresponding to the well known Rate-Monotonic Algorithm. Furthermore, schedulability criterion are established based on RTA. Additionally, delay bound computation indicates that response time analysis provides a tighter delay bound than that obtained by Network Calculus. Numerical simulations are carried out to confirm the validity, the applicability, and the performance of the proposed scheduling scheme.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Audio/Video and Hard Real-Time Capability for Advanced IMA Architectures

2011-01-2699

View Details

TECHNICAL PAPER

Bearing Fault Diagnosis of the Gearbox Using Blind Source Separation

2020-01-0436

View Details

TECHNICAL PAPER

Drivetrain Modeling, Simulation, and Analysis Using VHDL-AMS

2003-01-0861

View Details

X