Browse Publications Technical Papers 2011-22-0010

Evaluation of Injury Criteria for the Prediction of Commotio Cordis from Lacrosse Ball Impacts 2011-22-0010

Commotio Cordis (CC) is the second leading cause of mortality in youth sports. Impacts occurring directly over the left ventricle (LV) during a vulnerable period of the cardiac cycle can cause ventricular fibrillation (VF), which results in CC. In order to better understand the pathophysiology of CC, and develop a mechanical model for CC, appropriate injury criteria need to be developed. This effort consisted of impacts to seventeen juvenile porcine specimens (mass 21-45 kg). Impacts were delivered over the cardiac silhouette during the venerable period of the cardiac cycle. Four impact speeds were used: 13.4, 17.9, 22.4, and 26.8 m/s. The impactor was a lacrosse ball on an aluminum shaft instrumented with an accelerometer (mass 188 g - 215 g). The impacts were recorded using high-speed video. LV pressure was measured with a catheter. Univariate binary logistic regression analyses were performed to evaluate the predictive ability of ten injury criteria. A total of 187 impacts were used in the analysis. The criteria were evaluated on their predictive ability based on Somers' D (D) and Goodman-Kruskal gamma (γ). Injury risk functions were created for all criteria using a 2-parameter Weibull distribution using survival analysis. The best criteria for predicting CC were impact force (D=0.52, and γ=0.52) force* compression (D=0.49, and γ=0.49), and impact power (D=0.49, and γ=0.49). All of these criteria proved significant in predicting the probability of CC from projectile impacts in youth sports (p≺0.01). Force proved to be the most predictive of the ten criteria evaluated.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Potential Improvements to Impact Responses of the Flexible Legform Impactor


View Details


Advanced Processing Techniques for Expanded Polypropylene Foam


View Details


Patterns of Automobile Crash Damage


View Details