Browse Publications Technical Papers 2011-24-0009
2011-09-11

Numerical Investigation on the Spray Characteristics and Combustion Process in a DI Diesel Engine at Reduced Temperature Combustion Condition 2011-24-0009

In this paper, reduced temperature combustion has been investigated at high load condition of a direct injection diesel engine. A three dimensional CFD model for flow field, spray, spray-wall interactions, combustion and emissions formation processes have been used to carry out the computations. The combined effect of EGR temperature and EGR rate is analyzed to choose by consideration of engine performance. Then, the effect of injection timing and injection pressure is investigated to the improvement of mixture formation at high engine load condition. It reveals that combustion temperature is dramatically decreased by the increase of cold EGR to 25% rate. This characteristic influences on the increase of the liquid spray penetration and the decrease of indicated mean effective pressure (IMEP) and NOx emission associated with the increase of soot emission. Advance injection timing and high injection pressure together with applying 25% EGR lead to simultaneous reduction in NOx and soot formation compared with the base engine condition.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-01-0121

View Details

JOURNAL ARTICLE

Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation

2011-01-1847

View Details

TECHNICAL PAPER

Improving NOx Versus BSFC with EUI 200 Using EGR and Pilot Injection for Heavy-Duty Diesel Engines

960843

View Details

X