Browse Publications Technical Papers 2011-28-0106
2011-10-06

Improvement in the Wheel Design Using Realistic Loading Conditions - FEA and Experimental Stress Comparison 2011-28-0106

For the validation of a new design of a wheel, the conventional fatigue tests may not be entirely sufficient. They may give us the success or failure, but they may not help us any further in improving the design. Experimental Stress Analysis (ESA) is becoming increasingly crucial for the validation of any new design of the wheel. One can know the exact stresses acting at a point on the wheel during its operation with the help of ESA, making it very helpful for further upgradation in design. However, requirement of a prototype makes the validation process laborious, costly and time consuming. Finite Element Method (FEM) has evolved as a resourceful tool for analyzing various components under a variety of operating conditions. It is being used not only to predict the critical points bearing the highest stress in a wheel, but also to predict its fatigue life. However, it is still not very reliable due to its deviation from the ESA observations. The present study focuses on the validation of a new design of forged aluminum alloy wheel using ESA and FEM by comparing with the existing design. The analyses using both the methods were compared and correlated using Required Fatigue Strength (RFS) calculation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Challenges in Weight Reduction and Fatigue Life Enhancement in Wheel Design

2013-01-2900

View Details

TECHNICAL PAPER

Minimum Cycle Requirement for SAE J2562

2014-01-0073

View Details

TECHNICAL PAPER

The Science and Methodology of SAE Wheel Fatigue Test Specifications

2005-01-1826

View Details

X